Abstract
Newborn rat calvarial bone cells were grown to confluence and subjected to a matrix of sine wave 60-kHz capacitively coupled electrical signals of various field strengths, pulse-burst patterns, and duty cycles. Both [3H] thymidine incorporation into DNA and alkaline phosphatase activity were evaluated in field strengths ranging from 0.0001 to 20 mV/cm, with pulse-burst patterns ranging from continuous to 5 milliseconds ON/495 milliseconds OFF, with daily duty cycles ranging from 0.25% to 25%. A significant increase in proliferation occurred in field strengths of 0.1, 1, and 20 mV/cm when the signal was applied continuously for six hours. Significant proliferation also occurred when the 20-mV/cm field was pulsed for six hours at 5 milliseconds ON/495 milliseconds OFF and at 5 milliseconds ON/245 milliseconds OFF. No change in alkaline phosphatase activity occurred in the 20-mV/cm field with any signal. At 1 mV/cm, there was a significant decrease in alkaline phosphatase activity in the continuous signal and in the 5 milliseconds ON/62 milliseconds OFF signal; in the lower fields evaluated, there was an actual decrease in alkaline phosphatase activity with some of the signals. The field strength plays a dominant role in determining the bone-cell's proliferative response, and to a lesser extent the alkaline phosphatase activity response, to a capacitively coupled electric field. The pulse configuration and the duty cycle are also important, but only if the proper field strength is being applied to the cell.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.