Abstract

ObjectivesTo investigate the survival rates and fracture resistance of dentures made from different teeth (milled, 3D-printed, fabricated), bases (milled, 3D-printed, pressed) and bonding combinations.Materials and methodsSpecimens (11 groups, n = 8 per group) were fabricated from combinations with a denture tooth (anterior tooth 21) and a denture base material. The groups consisted of combinations of teeth (6x), denture base materials (5x) and adhesive bonding options (4x). The teeth were printed, milled or prefabricated. The denture base was produced conventionally or was milled or 3D-printed. Two dentures were milled from one industrially produced block. The dentures were subjected to thermal and mechanical loading (TCML) and subsequent fracture test. Statistics: ANOVA, Bonferroni-test, Kaplan-Meier survival, Pearson correlation; α = 0.05.ResultsMean loading cycles varied between 221,869 (8), 367,610 (11), 513,616 (6) 875,371 (3) and 9,000,030 (4). ANOVA revealed significant (p ≤ 0.001) different surviving cycles. Log Rank test showed significantly (p < 0.001) different loading cycles. Fracture force after TCML varied between 129.8 +/- 97.1 N (3) and 780.8 +/- 62.5 N (9). ANOVA comparison revealed significant (p < 0.001) different fracture loadings between the individual systems. Correlation was found between fracture force and loading cycles (0.587, p < 0.001).ConclusionsDifferent survival rates and fracture forces were found for dentures made of different teeth (milled, 3D-printed, prefabricated), bases (milled, 3D-printed, pressed) and bonding combinations. Milled, pressed and prefabricated systems provided longer survival and fracture force than the other tested systems.Clinical relevance Optimal tooth-base combinations can help to produce a denture that is stable and resistant during clinical application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.