Abstract

AbstractThe surface of polydimethylsiloxane rubber (PDMS) was irradiated by a CO2‐pulsed laser. The irradiated surfaces were grafted by hydroxyethylmethacrylate phosphatidylcholine (HEMAPC) by using the preirradiation method. The laser‐treated surfaces and HEMAPC‐grafted PDMS surfaces were characterized by using a variety of techniques including ATR‐FTIR spectroscopy, scanning electron microscopy (SEM), and wettability, which was measured by a water‐drop contact angle. Different surfaces with different wettability were prepared. These surfaces, including untreated PDMS (hydrophobic), laser‐treated PDMS (superhydrophobic), and HEMAPC‐grafted surfaces (superhydrophilic), were used for a platelet adhesion study. Results from in vitro testing indicated that chemical structures, such as negative‐charge polar groups and wettability, are important factors in blood compatibility of these surfaces and the superhydrophilic (the most wettable) and the superhydrophobic (the most unwettable) of modified PDMS surfaces have excellent blood compatibility compared to the unmodified PDMS. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91:2042–2047, 2004

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.