Abstract

Silver nanoparticles (AgNP-P) from AgNO 3 were synthesized by using the broth prepared from the aromatic spath of male inflorescence of screw pine, Pandanus odorifer (Forssk.) Kuntze AgNP-P was then characterized by UV–visible spectroscopy, transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS). Functional groups in the broth were analyzed by Fourier Transform infrared spectroscopy (FTIR). Genotoxicity of AgNP-P was assessed by utilizing our well-established Allium cepa assay system with biomarkers including the generation reactive oxygen species (ROS: O 2 · - and H 2O 2), cell death, mitotic index, micronucleus, mitotic aberrations; and DNA damage by Comet assay. Other chemical forms of silver such as Ag + ion, colloidal AgCl, and AgNP-S at doses 0–80 mg L −1 were included for comparison with AgNP-P. The results revealed that AgNP-P and AgNP-S exhibited similar biological effects in causing lesser extent of cytotoxicity and greater extent of genotoxicity than that was exhibited by Ag + ion alone. Among different tested chemical forms of silver, colloidal AgCl was identified to be the least cytotoxic and genotoxic. Cell death and DNA-damage induced by AgNP-P were prevented by Tiron and dimethyl thiourea that scavenge O 2 · - and H 2O 2, respectively. The present findings demonstrated the role of ROS in the AgNP-induced cell death and DNA damage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.