Abstract
The potential cardiovascular effects of e-cigarettes remain largely unidentified and poorly understood. E-liquids contain numerous chemical compounds and can induce exposure to potentially toxic ingredients (e.g., nicotine, flavorings, etc.). Moreover, the heating process can also lead to the formation of new thermal decomposition compounds that may be also hazardous. Clinical as well as in vitro and in vivo studies on e-cigarette toxicity have reported potential cardiovascular damages; however, results remain conflicting. The aim of this study was to assess, in vitro, the toxicity of e-liquids and e-cigarette aerosols on human aortic smooth muscle cells. To that purpose, cells were exposed either to e-liquids or to aerosol condensates obtained using an e-cigarette device at different power levels (8 W or 25 W) to assess the impact of the presence of: (i) nicotine, (ii) cinnamon flavor, and (iii) thermal degradation products. We observed that while no cytotoxicity and no ROS production was induced, a pro-inflammatory response was reported. In particular, the production of IL-8 was significantly enhanced at a high power level of the e-cigarette device and in the presence of the cinnamon flavor (confirming the suspected toxic effect of this additive). Further investigations are required, but this study contributes to shedding light on the biological effects of vaping on the cardiovascular system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.