Abstract

Staphylococcus aureus is one of the most common pathogens isolated from respiratory tracts of Cystic Fibrosis patients (CF). The infection by this pathogen starts in early infancy, often preceding chronic infections by Pseudomonas aeruginosa. The infection and colonization by methicillin-resistant Staphylococcus aureus (MRSA) are, by then, events very frequent among CF patients and this bacterial isolation leads to complications in therapeutic management because of the limited treatment options. Strains of Staphylococcus aureus are able to produce biofilms on natural or synthetic surfaces. Biofilms are sophisticated communities of matrix-encased bacteria and infections by biofilm-producing bacteria are particularly problematic because sessile bacteria can often withstand host immune responses and are generally much more tolerant to antibiotics. The first aim of this work is to evaluate the ability of MRSA strains isolated from respiratory secretions of CF patients to develop biofilms in comparison with methicillin-sensitive Staphylococcus aureus (MSSA) strains obtained from respiratory secretions of CF patients.Therefore, our second aim is to evaluate the environmental influence on this ability. To evaluate the development of biofilm on solid matrix and the possible environmental influence,we applied the method described by Christensen et al. We found that a significantly higher number of MRSA strains were biofilm positive compared with MSSA strains (p<0.05).The presence of glucose did not influence the ability to form biofilm in our MRSA strains (p=0.165). MSSA strains are not strong biofilm-producers, but, when grown in TSB added with 0.25% glucose, the number of biofilm-forming strains increases, as expected. These data suggest a possible association between methicillin-resistance and biofilm formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.