Abstract

AbstractIn this study, electrospinning was used to fabricate silk‐fibroin (SF)‐based mats, which served as substrates for the culturing of rat Schwann cells. Microscopic observation and physical parameter measurements revealed that the electrospun SF mats had a nanofibrous structure with favorable physical properties. Fourier transform infrared analysis provided chemical characterization of the molecular confirmation of the SF proteins in the mats. The morphology and immunocytochemistry showed that the mats supported the survival and growth of the cultured Schwann cells, and 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide analysis indicated that the electrospun SF mat extract had no cytotoxic effects on Schwann cell proliferation. Collectively, all of the results suggest that the electrospun SF mats might become a candidate scaffold for tissue‐engineered nerve grafts to promote peripheral nerve regeneration. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.