Abstract

The root of Angelica sinensis (Oliv.) Diels is a traditional Chinese medicine (TCM) widely used for the cardio-cerebrovascular, anti-inflammatory, and anti-cancer agents, etc. Currently, the root yield is mainly limited by narrow geographical distribution, early bolting and flowering (EBF), continuous cropping obstacle, and germplasm degeneration. While two ancillary strategies to produce bioactive metabolites by bioreactor and innovate new germplasms by genome editing have not been conducted. Here is reported embryogenic callus induction, histomorphological structure identification, suspension cell culture, bioactive metabolite determination, shoot bud and root differentiation, and plantlet acclimatization at different treatments such as explants, hormones, and culture conditions. The embryogenic calli can be effectively induced (99.0%) from the root of aseptic seedlings by a combination of 2.0 mg/L IBA and 0.2 mg/L KT, and embryogenic cells including: three-cell, globular-, heart-, torpedo-, and cotyledon-shaped embryos were observed. The maximum growth rate, bioactive metabolites contents (i.e., ferulic acid, soluble sugar, flavonoids, and phenolic), and antioxidant capacities were observed at 9–12 d with inoculum density 40 g/L, 22 ℃ and 16/8 h light/dark. Robust plantlets can be obtained within 180 d after successive shoot bud and root differentiation as well as plantlet acclimation. Based on the strategies for the satisfaction of root demand, an effective and complete scheme is proposed for producing bioactive metabolites and regenerating plant of A. sinensis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call