Abstract

Nickel is a ubiquitous environmental pollutant, which has various effects on reproductive endocrinology. In this study, human adrenocortical carcinoma (NCI-H295R) cell line was used as an in vitro biological model to study the effect of nickel chloride (NiCl2) on the viability and steroidogenesis. The cells were exposed to different concentrations (3.90; 7.80; 15.60; 31.20; 62.50; 125; 250 and 500 microM) of NiCl2 and compared with control group (culture medium without NiCl2). The cell viability was measured by the metabolic activity assay. Production of sexual steroid hormones was quantified by enzyme linked immunosorbent assay. Following 48 h culture of the cells in the presence of NiCl2 a dose-dependent depletion of progesterone release was observed even at the lower concentrations. In fact, lower levels of progesterone were detected in groups with higher doses (>/=125 microM) of NiCl2 (P<0.01), which also elicited cytotoxic action. A more prominent decrease in testosterone production (P<0.01) was also noted in comparison to that of progesterone. On the other hand, the release of 17beta-estradiol was substantially increased at low concentrations (3.90 to 62.50 microM) of NiCl2. The cell viability remained relatively unaltered up to 125 microM (P>0.05) and slightly decreased from 250 microM of NiCl2 (P<0.05). Our results indicate endocrine disruptive effect of NiCl2 on the release of progesterone and testosterone in the NCI-H295R cell line. Although no detrimental effect of NiCl2 (</=62.50 microM) could be found on 17beta-estradiol production, its toxicity may reflect at other points of the steroidogenic pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call