Abstract

The aim of this study was to evaluate antioxidative features using 2,2-diphenyl-1-pycrylhydrazyl free radical (DPPH•) scavenging method, bovine serum albumin (BSA)-binding properties with usage of spectrofluorimetric method, proliferative and cyto/genotoxic status by use of chromosome aberration test, and antimicrobial potential using broth microdilution method, followed by resazurin assay of benzyl-, isopropyl-, isobutyl and phenylparaben in vitro. Our results showed that all parabens had significant antiradical scavenger activity compared to p-hydroxybenzoic acid (PHBA) precursor. Higher mitotic index for benzyl-, isopropyl and isobutylparaben (250 µg/mL) in comparison with control was demonstrated. An increase in the frequency of acentric fragments in lymphocytes treated with benzylparaben and isopropylparaben (125 and 250 µg/mL), and isobutylparaben (250 µg/mL) was observed. Isobutylparaben (250 µg/mL) induced higher number of dicentric chromosomes. An increased number of minute fragments in lymphocytes exposed to benzylparaben (125 and 250 µg/mL) was found. A significant difference in the frequency of chromosome pulverization, between phenylparaben (250 µg/mL) and control, was detected. Benzylparaben (250 µg/mL) and phenylparaben (62.5 µg/mL) caused an increase in the number of apoptotic cells, while isopropylparaben (62.5, 125 and 250 µg/mL) and isobutylparaben (62.5 and 125 µg/mL) induced higher frequency of necrosis. Minimum inhibitory concentration (MIC) of tested parabens ranged 15.62–250 µg/mL for bacteria, and 125–500 µg/mL for the yeast. Minimum microbiocidal concentration ranged 31.25 to 500 µg/mL, and 250 to 1000 µg/mL in bacteria and fungi respectively. The lowest MICs for bacteria were observed for phenyl- (15.62 µg/mL) and isopropylparaben (31.25 µg/mL) against Enterococcus faecalis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call