Abstract
Soil contamination in former mining districts is a persistent problem resulting from the historic lack of legal requirements as regards land restoration after mine closures. Much of this polluted land is currently being used worldwide for livestock and big game production, with the consequent health risks for the animals exposed and the subsequent threats to food safety. Soil remediation and restoration may be unfeasible or difficult to accomplish in the short term when pollution affects large territories and other alternatives must, therefore, be explored in order to reduce the probability of grazing animals being exposed to this contamination. In this paper, we study the use of mineral blocks (MBs) as a potential alternative by which to reduce the oral bioavailability of lead (Pb) in polluted soils by means of a simplified in vitro assay simulating gastrointestinal pH conditions. Experiments were carried out with twelve commercial MBs of different compositions in order to identify the most useful to be tested in further in vivo bioavailability studies. The results showed that one of them reduced the bioaccessibility of Pb from polluted soil by 88.2% and 75.9% under gastric and intestinal conditions, respectively, when compared with assays containing only polluted soil without MBs. The MB in question had the highest phosphorus content (7%) and one of the highest calcium contents (10%) of all those tested. Furthermore, negative correlations were detected between the content of calcium and phosphorus in the MBs and the percentage of bioaccessible Pb under gastric conditions, and between phosphorus and bioaccessible Pb under intestinal conditions. The use of MBs with a high phosphorus and calcium content should consequently be tested in vivo as a cost-effective (€ 0.6-1.5/sheep/month) tool by which to reduce the bioavailability of Pb for extensive grazing livestock reared in contaminated areas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Environmental science and pollution research international
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.