Abstract
BackgroundThe stability of implant-abutment connection is crucial to minimize mechanical and biological complications. Therefore, an assessment of the microgap behavior and abutment displacement in different implant-abutment designs was performed.MethodsFour implant systems were tested, three with a conical implant-abutment connection based on friction fit and a cone angle < 12 ° (Medentika, Medentis, NobelActive) and a system with an angulated connection (< 40°) (Semados). In different static loading conditions (30 N − 90º, 100 N − 90º, 200 N − 30º) the microgap and abutment displacement was evaluated using synchrotron-based microtomography and phase-contrast radioscopy with numerical forward simulation of the optical Fresnel propagation yielding an accuracy down to 0.1 μm.ResultsMicrogaps were present in all implant systems prior to loading (0.15–9 μm). Values increased with mounting force and angle up to 40.5 μm at an off axis loading of 100 N in a 90° angle.ConclusionsIn contrast to the implant-abutment connection with a large cone angle (45°), the conical connections based on a friction fit (small cone angles with < 12°) demonstrated an abutment displacement which resulted in a deformation of the outer implant wall. The design of the implant-abutment connection seems to be crucial for the force distribution on the implant wall which might influence peri-implant bone stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.