Abstract

Design and development of biocompatible, biodegradable and stable dual delivery systems for drug and gene is the need of the hour. Here, we have designed a strategy to develop carrier systems consisting of above mentioned properties by (a) incorporating an unnatural amino acid in the peptide backbone, and b) conjugating a low molecular weight cationic polymer (polyethylenimine, PEI) for incorporating cationic charge. Using this strategy, we have synthesized a small series of Boc-FΔF-AH-polyethylenimine conjugates by varying the concentration of Boc-FΔF-aminohexanoic acid, viz., PP-1, PP-2 and PP-3. These conjugates self-assembled in aqueous medium to form micelles in the size range of ~144–205 nm with zeta potential ~ +7.9–14.2 mV bearing core-shell type of conformation. Positive surface of the micelles facilitated the binding of plasmid DNA as well as transportation inside the cells. The hydrophobic core of the nanostructures helped in the encapsulation of the hydrophobic drug molecule, which was then got released in a controlled manner. DNA complexes of the conjugates were not only found non-toxic but also exhibited higher transfection efficacy than the native polymer and Lipofectamine. Altogether, these nanostructures are capable of delivering a drug and a gene simultaneously in vitro and could be used as next-generation delivery agents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.