Abstract
Electron-transferring flavoprotein from pig kidney is composed of four non-covalently bound components: alpha and beta subunits, flavin adenine dinucleotide (FAD), and adenosine monophosphate (AMP). This paper reveals the pathway of assembly of the electron-transferring flavoprotein. The holoprotein can be formed by two different pathways. (i) alpha + beta <==> (alpha-beta)*, (alpha-beta)* + AMP <==> (alpha-beta-AMP)*, (alpha-beta-AMP)* <==> alpha-beta-AMP, alpha-beta-AMP + FAD <==> holoprotein. (ii) alpha + beta <==> alpha-beta, alpha-beta + FAD <==> alpha-beta-FAD, alpha-beta-FAD + AMP <==> holoprotein. Here the presence and absence of asterisks distinguish different conformations with the same composition. The monomeric forms of alpha and beta showed no significant binding with FAD and AMP. AMP and FAD associated with different heterodimer forms which were formed as a result of weak binding between alpha and beta. The binding of alpha + beta + AMP was much faster than that of alpha + beta + FAD because the rate of alpha + beta --> (alpha-beta)* was much faster than that of alpha + beta --> alpha-beta. The alpha-beta-AMP complex associated with FAD rapidly. As a result, the binding of FAD with the subunits is promoted by AMP. The alpha-beta-FAD complex associated with AMP much more slowly than the mixture of alpha and beta. Thus the AMP binding with the subunits is inhibited by the preceding FAD binding.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.