Abstract

RNA methyltransferases (MTases) are responsible for co- and posttranscriptional methylation of nucleotides in a wide variety of RNA substrates. Examination of the target specificity, catalytic activity, and function of these enzymes requires in vitro methylation assays. Here, we provide a detailed protocol for the methylation of in vitro transcripts, synthetic RNAs, and total cellular RNA using recombinant RNA methyltransferases and S-adenosylmethionine (SAM) as a methyl group donor. We describe how this method can be coupled to fluorographic detection of RNA methylation if 3H-labeled SAM is used, and discuss alternative chromatography-based methods for the detection of methylated nucleotides, focusing on reversed-phase high-performance liquid chromatography (RP-HPLC). In both cases, mutagenesis of the methyltransferase or the RNA substrate can be employed to elucidate the catalytic mechanisms and target specificity of the enzymes. Together these approaches provide valuable insight into the action of RNA methyltransferases on the molecular level and serve as a basis for further functional characterization of RNA methyltransferases in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call