Abstract

BackgroundMeningomyelocele (MMC) is a condition that is originated by the fusion defect of the neural tube. It is a congenital anomaly and can be characterized by spinal cord defects and impaired skin integrity. It is very important to close the skin openings via three-dimensional artificial skin like construction for preventing infection and maintaining the healthy skin structure. Therefore, we aim to generate artificial skin like structures formed by the own cells of donor for treating the MMC-related skin disorder. MethodsIn this study, waste placental tissues were collected and decellularization process was applied. Decellularized and normal placental tissues were compared by immunohistochemistry (IHC). Donor’s own placental stem cells were seeded onto biological scaffold and were differentiated into skin related cell types. Finally, gene expressions were evaluated, and the structural integrity were analyzed with IHC. Tube formation assay was also performed for examining the angiogenesis formation of the tissue in order to evaluate the possibility of a healthy organ development. ResultsCharacterization experiments proved that the decellularized skin preserved a normal skin 3D construction and vasculature along with significant ECM arrangements. The well-kept placental ECM scaffold was cytocompatible, supportive of mesenchymal cell types. Native organ related scaffold is expected to carry a huge influence in skin tissue engineering via delivering a niche for skin-based cells and even for stem/progenitor cells. Regarding to the data obtained from this study, in vivo investigation the skin-like structure in animal models is thought to be the next step as a future prospect. ConclusionThis study is a reference investigation for skin engineering based on placental stem cells and biological scaffolds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.