Abstract
The formation of biologically equivalent carbonate-containing apatite on the surface of synthetic hydroxyapatite (HA) is an important step leading to good bone healing. In this study, HA-reinforced polyetheretherketone (PEEK) composites were prepared by homogeneous mixing of HA and PEEK powders, compaction, and pressureless sintering. The bioactivity of HA/PEEK composite with 10, 20, 30 and 40vol% HA was evaluated by immersing the composite disks in the simulated body fluid (SBF) for up to 4 weeks. The surface of composite with 40vol% HA was covered by a layer of bone-like apatite just after 3 days of immersion, while 10vol% HA was covered only after 28 days. This apatite layer was characterized by SEM, thin film X-ray diffractometer, attenuated total reflectance–Fourier transform infrared spectrometer (FTIR)/FTIR. Introducing a concept called apatite-forming capacity of SBF, growth kinetics of the apatite layer on the surface of the composite disks was carried out. The growth rate constant increased with HA volume fraction of the composite, suggesting that the bioactivity of the HA/PEEK composite increases with increasing HA volume fraction in the composite.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.