Abstract

The derivatives of hyperforin, namely hyperforin acetate (2), 17,18,22,23,27,28,32,33-octahydrohyperforin acetate (3), and N,N-dicyclohexylamine salt of hyperforin (4), have been investigated for their antitumor properties. In-vitro studies demonstrated that 2 and 4 were active against HeLa (human cervical cancer), A375 (human malignant melanoma), HepG2 (human hepatocellular carcinoma), MCF-7 (human breast cancer), A549 (human nonsmall cell lung cancer), K562 (human chronic myeloid leukemia), and K562/ADR (human adriamycin-resistant K562) cell lines with IC50 values in the range of 3.2–64.1 μM. The energy differences between highest occupied molecular orbital and lowest unoccupied molecular orbital of 2–4 were calculated to be 0.39778, 0.43106, and 0.30900 a.u., respectively, using the Gaussian 03 software package and ab initio method with the HF/6-311 G* basis set. The result indicated that the biological activity of 4 might be the strongest and that of 3 might be the weakest, which was in accordance with their corresponding antiproliferative effects against the tested tumor cell lines. Compound 4 caused cell cycle arrest at G2/M phase in flow cytometry experiment and induced apoptosis by 4′,6-diamidino-2-phenylindole staining and Annexin V-FITC/PI (propidium iodide) double-labeled staining in HepG2 cells. The results indicated a potential for N,N-dicyclohexylamine salt of hyperforin as a new antitumor drug.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.