Abstract

SUMMARYResearch backgroundCardiovascular diseases and diabetes are the biggest causes of death globally. Bioactive peptides derived from many food proteins using enzymatic proteolysis and food processing have a positive impact on the prevention of these diseases. The bioactivity of Chinese pond turtle muscle proteins and their enzymatic hydrolysates has not received much attention, thus this study aims to investigate their antioxidant, antidiabetic and cytotoxic activities.Experimental approachChinese pond turtle muscles were hydrolysed using four proteolytic enzymes (Alcalase, Flavourzyme, trypsin and bromelain) and the degrees of hydrolysis were measured. High-performance liquid chromatography (HPLC) was conducted to explore the amino acid profiles and molecular mass distribution of the hydrolysates. The antioxidant activities were evaluated using various in vitro tests, including 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), hydroxyl radical scavenging activity, reducing capacity, chelating Fe2+ and lipid peroxide inhibition activity. Antidiabetic activity was evaluated using α-amylase inhibition and α-glucosidase inhibition assays. Besides, cytotoxic effect of hydrolysates on human colon cancer (HT-29) cells was assessed.Results and conclusionsThe amino acid composition of the hydrolysates revealed higher mass fractions of glutamic, aspartic, lysine, hydroxyproline and hydrophobic amino acids. Significantly highest inhibition of lipid peroxidation was achieved when hydrolysate obtained with Alcalase was used. Protein hydrolysate produced with Flavourzyme had the highest radical scavenging activity measured by DPPH (68.32%), ABTS (74.12%) and FRAP (A700 nm=0.300) assays, α-glucosidase (61.80%) inhibition and cytotoxic effect (82.26%) on HT-29 cell line at 550 µg/mL. Hydrolysates obtained with trypsin and bromelain had significantly highest (p<0.05) hydroxyl radical scavenging (92.70%) and Fe2+ metal chelating (63.29%) activities, respectively. The highest α-amylase (76.89%) inhibition was recorded when using hydrolysates obtained with bromelain and Flavourzyme.Novelty and scientific contributionEnzymatic hydrolysates of Chinese pond turtle muscle protein had high antioxidant, cytotoxic and antidiabetic activities. The findings of this study indicated that the bioactive hydrolysates or peptides from Chinese pond turtle muscle protein can be potential ingredients in pharmaceuticals and functional food formulations.

Highlights

  • Cardiovascular diseases, chronic obstructive pulmonary disease (COPD), diabetes, rheumatoid arthritis and cancer are the biggest causes of death globally [1]

  • Protein hydrolysate produced with Flavourzyme had the highest radical scavenging activity measured by DPPH (68.32 %), ABTS (74.12 %) and ferric reducing antioxidant power (FRAP) (A700 nm=0.300) assays, α-glucosidase (61.80 %) inhibition and cytotoxic effect (82.26 %) on HT-29 cell line at 550 μg/mL

  • The findings of this study indicated that the bioactive hydrolysates or peptides from Chinese pond turtle muscle protein can be potential ingredients in pharmaceuticals and functional food formulations

Read more

Summary

Introduction

Cardiovascular diseases, chronic obstructive pulmonary disease (COPD), diabetes, rheumatoid arthritis and cancer are the biggest causes of death globally [1]. Food-derived bioactive peptides with therapeutic abilities have gained an increasing interest­.­ Peptides with specific amino acid sequences that are potent in delaying and retaining the onset of diet-related diseases have been given particular attention [2]. Food-derived protein hydrolysates or peptides as natural food resources play an important role in preventing such diseases through inhibition of α-glucosidase and α-amylase, or through antihypertensive, antioxidant, antiproliferative and antimicrobial activities [2,3]. Enzymatic hydrolysis of proteins is one of the most effective approaches that can be used to release such bioactive protein hydrolysates or peptides, without affecting their nutritive value. Enzymatic protein hydrolysates contain smaller peptides derived from the larger poly­ peptides due to enzymatic action with 2 to 20 amino acid residues [2,3]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.