Abstract

Mounting evidences continue to support the involvement of oxidative/nitrosative stress and inflammation in the pathogenesis of many diseases. Plant constituents having antioxidant activities together with anti-inflammatory activities may provide better opportunities to develop anti-inflammatory agents. In view of this, we evaluated the antioxidant and antiinflammatory activities of methanolic extract of whole plants of Angelica decursiva, and its solvent soluble fractions via in vitro activities against lipopolysaccharide-induced nitric oxide (NO) production in RAW 264.7 cells, as well as in vitro scavenging activities against 1,1-diphenyl-2-picrylhydrazyl, 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid, NO, and peroxynitrite. Among the tested fractions, the ethyl acetate fraction was found as the most active antioxidant fraction together with significant anti-inflammatory effect. From the active ethyl acetate fraction, four coumarin derivatives consisting of nodakenin, nodakenetin, umbelliferone, and umbelliferone-6-carboxylic acid, along with a phenolic compound, vanillic acid, were isolated. Among them, umbelliferone 6-carboxylic acid and vanillic acid were isolated for the first time from this plant. In all antioxidant assays, vanillic acid showed the highest antioxidant potential followed by umbelliferone 6-carboxylic acid among the isolated compounds. In the anti-inflammatory assay, umbelliferone 6-carboxylic acid exhibited the highest inhibitory activity against lipopolysaccharide-induced NO production in RAW 264.7 cells with an IC(50) value of 72.98 μg/mL. Therefore, the present study reveals the potential antioxidant and antiinflammatory activities of whole plants of A. decursiva and its constituents, mainly umbelliferone 6-carboxylic acid, which could be used in the development of therapeutic and preventive agents for oxidative stress-related inflammatory diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.