Abstract

Most imipenem-resistant Acinetobacter baumannii (IRAB) isolates are multiresistant, leaving few options for an effective antimicrobial therapy. We purposed to select possible candidates for the combinations of antimicrobials that are synergistic in vitro for inhibitory or bactericidal activities against IRAB and evaluate the usefulness of double disk synergy test (DDS) in predicting synergistic bactericidal activity. Fifty-five IRAB isolates recovered from patients during the period from August 1999 to November 2000 were tested for susceptibilities to amikacin, gentamicin, tobramycin, piperacillin, piperacillin/tazobactam, cefotaxime, cefepime, cefoperazone/sulbactam (C/S), imipenem, meropenem, ciprofloxacin, levofloxacin, trimethoprim/sulfamethoxazole, chloramphenicol, minocycline, and colistin by the Clinical and Laboratory Standard Institute agar dilution method. Three isolates showing different susceptibility profiles were tested for antimicrobial synergy by DDS and then by timekill study (TKS) using DDS-positive combinations. Colistin, C/S, and minocycline were active in 50 (90.9%), 50, and 44 (80.0%) isolates, respectively, and all the other drugs were active in less than 20% of isolates. Minocycline-imipenem, minocycline-C/S, minocycline-amikacin, imipenem-tobramycin, C/S-amikacin, and C/S-tobramycin combinations showed synergistic inhibitory or bactericidal activity by TKS when the same combinations were synergistic in DDS; however, C/S-imipenem was found synergistic on DDS, but not by TKS. Colistin, C/S, and minocycline were relatively active against IRAB. DDS might help predict the synergistic antimicrobial effect of TKS if one of the combinations was susceptible.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call