Abstract

The emergence and global spread of antimicrobial resistance among bacterial pathogens demand alternative strategies to treat life-threatening infections. Combination drugs and repurposing of old compounds with known safety profiles that are not currently used in human medicine can address the problem of multidrug-resistant infections and promote antimicrobial stewardship in veterinary medicine. In this study, the antimicrobial activity of robenidine alone or in combination with ethylenediaminetetraacetic acid (EDTA) or polymyxin B nonapeptide (PMBN) against Gram-negative bacterial pathogens, including those associated with canine otitis externa and human skin and soft tissue infection, was evaluated in vitro using microdilution susceptibility testing and the checkerboard method. Fractional inhibitory concentration indices (FICIs) and dose reduction indices (DRI) of the combinations against tested isolates were determined. Robenidine alone was bactericidal against Acinetobacter baumannii [minimum inhibitory concentrations (MIC) mode = 8 μg/ml] and Acinetobacter calcoaceticus (MIC mode = 2 μg/ml). Against Acinetobacter spp., an additivity/indifference of the combination of robenidine/EDTA (0.53 > FICIs > 1.06) and a synergistic effect of the combination of robenidine/PMBN (0.5 < FICI) were obtained. DRIs of robenidine were significantly increased in the presence of both EDTA and PMBN from 2- to 2048-fold. Robenidine exhibited antimicrobial activity against Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa, in the presence of sub-inhibitory concentrations of either EDTA or PMBN. Robenidine also demonstrated potent antibacterial activity against multidrug-resistant Gram-positive pathogens and all Gram-negative pathogens isolated from cases of canine otitis externa in the presence of EDTA. Robenidine did not demonstrate antibiofilm activity against Gram-positive and Gram-negative bacteria. EDTA facilitated biofilm biomass degradation for both Gram-positives and Gram-negatives. The addition of robenidine to EDTA was not associated with any change in the effect on biofilm biomass degradation. The combination of robenidine with EDTA or PMBN has potential for further exploration and pharmaceutical development, such as incorporation into topical and otic formulations for animal and human use.

Highlights

  • The widespread occurrence of multidrug-resistant (MDR) pathogens is problematic in both human and animal medicine (Morehead and Scarbrough, 2018)

  • Robenidine did not demonstrate any antimicrobial activity against Gram-negative control strains (E. coli ATCC 25922, E. coli ATCC 11229, P. aeruginosa ATCC 27853, P. mirabilis ATCC 43071 and K. pneumoniae ATCC 13883) at the highest concentrations (256 μg/ml) tested except for A. baumannii ATCC 19606 (32 μg/ml) and A. baumannii ATCC 12457 (64 μg/ml)

  • The combination of robenidine and ethylenediaminetetraacetic acid (EDTA) resulted in a synergistic interaction against the standard isolates of E. coli as well as against P. aeruginosa ATCC 27853, P. putida ATCC 17428, P. aeruginosa, and K. pneumoniae ATCC 13883

Read more

Summary

Introduction

The widespread occurrence of multidrug-resistant (MDR) pathogens is problematic in both human and animal medicine (Morehead and Scarbrough, 2018). Resistance could be combated by the development of new drugs active against antimicrobial-resistant bacteria. The pharmaceutical industry has reduced its research efforts for the discovery and development of novel antibacterial drugs (Theuretzbacher et al, 2018). Adding to this global issue, the only novel antimicrobial classes that have been introduced in the last 20 years are the lipopeptides (daptomycin), oxazolidinones (linezolid and tedizolid) and the lipoglycopeptides (dalbavancin, oritavancin, and telavancin), which predominantly have a Gram-positive spectrum of activity (Wilcox, 2005; Saravolatz et al, 2009; Zhanel et al, 2012). The lack of novel antimicrobial development has resulted in attempts to safeguard critically important antimicrobials (antimicrobial stewardship) and a search for alternatives to treat MDR infections, including those in animals (Chan et al, 2018a; Hickey et al, 2018)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call