Abstract

A magnetic nanoparticles-loaded polymeric nanocarrier was developed. Amphiphilic copolymer, methoxy polyethylene glycol-poly(D,L-lactide-co-glycolide)(MPEG-PLGA) could self-assemble to form nanomicelle with the help of emulsion-solvent evaporation technique. This nanocarrier with core-shell structure was loaded with magnetic iron oxide nanoparticles(IONPs) and anticancer drug paclitaxel(PTX). The hydrodynamic diameter of IONPs-PTX-loaded nanocarrier showed an average size of 110 nm with a polydispersity index(PDI) of 0.136, and its zeta potential was (–4.76±0.36) mV. The drug-loading content and encapsulation efficiency were 4.47% and 31.28%, respectively. In vitro drug release experiment was performed and a sustained release profile was observed. 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide(MTT) assay indicated that IONPs-PTX-loaded nanocarrier showed comparable cytotoxicity with free paclitaxel. When an external magnetic field was applied, the nanocarrier significantly localized at the target area, demonstrating that the nanocarrier could be used for potential magnetic targeted drug delivery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call