Abstract
Electrospinning has recently emerged as a leading technique for the formation of nanofibrous structures made of organic and inorganic components. In this study, nanofibrous scaffolds were prepared by electrospining a bend solution of poly(L-lactide-co-glycolide) (PLGA) and silver nanoparticles in 1,1,1,3,3,3,-hexafluoro-2-propanol (HFIP). The resulting fibers ranged from 420 to 590 nm in diameter. To evaluate the possibility of using silver-containing PLGA as a tissue engineering scaffold, experiments on cell viability and antibacterial activity were carried out. As a result, PLGA nanofibrous scaffolds having silver nanoparticles of more than 0.5 wt% showed antibacterial effect against Staphylococcus aureus and Klebsiella pneumonia. Furthermore, silver-containing PLGA nanofibrous scaffolds showed viability, indicating their possible application in the field of tissue engineering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.