Abstract

BackgroundConventional local treatment for medullary osteomyelitis (OM) includes insertion of antibiotic-loaded polymethylmethacrylate (PMMA) cement. Nevertheless, PMMA may delivery irregular concentration of antibiotic to surrounding tissue. We aimed to compare the in vitro antibacterial activity of Bioactive Glass (BAG) S53P4, which is a compound showing local antibacterial activity, to that of antibiotic-loaded PMMA against multidrug resistant bacteria from OM isolates.MethodsWe studied convenience samples of multidrug resistant (MDR) microorganisms obtained from patients presenting OM and prosthetic joint infection (PJI). Mixtures containing tryptic soy broth (TSB) and inert glass beads (2 mm), BAG-S53P4 granules (0.5–0.8 mm and < 45 mm) and Gentamicin or Vancomycin-loaded PMMA beads were inoculated with methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant coagulase-negative Staphylococcus (MR-CoNS), Pseudomonas aeruginosa or Klebsiella pneumoniae isolates. Glass beads (2.0 mm) were used as a control. Antibacterial activity was evaluated by means of time-kill curve, through seeding the strains on blood agar plates, and subsequently performing colony counts after 24, 48, 72, 96, 120 and 168 h of incubation. Differences between groups were evaluated by means of two-way analysis of variance (ANOVA) and Bonferroni’s t test.ResultsInhibition of bacterial growth started soon after 48 h of incubation, reached zero CFU/ml between 120 and 168 h of incubation for both antibiotic-loaded PMMA and BAG S53P4 groups, in comparison with inert glass (p < 0.05). No difference regarding time-kill curves between antibiotic-loaded PMMA and BAG S53P4 was observed.ConclusionsBAG S53P4 presented antibacterial properties as much as antibiotic-loaded PMMA for MDR bacteria producing OM and PJI.

Highlights

  • Conventional local treatment for medullary osteomyelitis (OM) includes insertion of antibiotic-loaded polymethylmethacrylate (PMMA) cement

  • Study design In the study, we analyzed the effect of Bioactive Glass (BAG) S53P4 (BonAlive Biomaterials Ltd., Turku, Finland) and antibiotic-loaded PMMA (DePuy Smart Set Bone Cement, DePuy GMW Endurance, DePuy International Ltd., UK), on eighteen multidrug resistant bacterial strains isolated from bone tissue and sonicate fluid cultures of patients presenting osteomyelitis and orthopedicimplant associated infections

  • Comparative analysis of antibacterial activity of BAG in relation to antibiotic-impregnated PMMA Bacterial Time-Kill Curves were produced according to the antibiotic used, and Gram staining classification of each bacterium, the total of all groups as well as comparison between them are shown in Figs. 1a-c and 2

Read more

Summary

Introduction

Conventional local treatment for medullary osteomyelitis (OM) includes insertion of antibiotic-loaded polymethylmethacrylate (PMMA) cement. We aimed to compare the in vitro antibacterial activity of Bioactive Glass (BAG) S53P4, which is a compound showing local antibacterial activity, to that of antibiotic-loaded PMMA against multidrug resistant bacteria from OM isolates. An increasing number of cases of OM caused by multiresistant microorganisms, both in hospital and community-acquired infections, have recently been reported [4, 5],. This microbiological profile is most characteristic in OM following surgeries for the treatment of fractures and articular degenerative diseases (osteosynthesis and arthroplasties), or secondary to pressure ulcers. The expression of antimicrobial resistance by these agents, coupled with biofilm formation, reduces cure rates and increases disease morbidity, presenting a challenge to the current treatment of OM

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call