Abstract

Naturally occurring monoglyceride esters of fatty acids have been associated with a broad spectrum of antimicrobial activities. We used an automated turbidimetric method to measure the MIC and assess the antimicrobial activity of five monoglycerides (monocaprin, monolaurin, monomyristin, monopalmitin, and monostearin) against pathogenic strains of Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, and Escherichia coli. The antibacterial activity of monocaprin was highest because its carbon chain is shorter than those of other monoglycerides. The MICs of monocaprin against S. aureus, B. subtilis, P. aeruginosa, and E. coli were 0.32, 0.32, 2.5, and 2.5 mg/mL, respectively. Monocaprin had antibacterial activity under neutral and alkaline conditions (pH 7.0 to 9.0) but had no inhibitory effect on S. aureus, B. subtilis, and E. coli under weakly acidic conditions (pH 6.0). The antibacterial mechanism of monocaprin against gram-positive strains (S. aureus and B. subtilis) resulted from destruction of the cell membrane. In contrast, the antibacterial activity of monocaprin against gram-negative strains (P. aeruginosa and E. coli) was attributed to damage to lipopolysaccharides in the cell walls. Because of its inhibitory effect on both gram-positive and gram-negative bacteria, monocaprin could be used as an antibacterial additive in the food industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call