Abstract

AbstractLarge quantities of mussel byssus are generated annually as a co-product of the mussel-processing industry. This fibrous material is a rich source of collagen, which when extracted has potential uses as an alternative source of collagen for food applications. However, due the complex structure of the material, the extraction of the collagenous components using food-friendly strategies has proved challenging to date. An enzyme-aided method, using a proline endoproteinase, was employed for the extraction of collagen from mussel byssus yielding 138.82 ± 2.25 mg collagen/g dry weight. Hydrolysates of the collagen extract were generated using five food-grade enzyme preparations with Corolase® PP giving the highest extent of hydrolysis. Reversed-phase and gel permeation high-performance liquid chromatography of the extracted collagen and its enzymatic hydrolysates showed significant hydrolysis of collagen. The hydrolysates generated with Corolase® PP showed the highest in vitro bioactivities: angiotensin-converting enzyme (ACE) IC50 = 0.79 ± 0.17 mg/ml, dipeptidyl peptidase-IV (DPP-IV) IC50 = 0.66 ± 0.17 mg/ml and oxygen radical absorbance capacity (ORAC) activity = 311.23 ± 13.41 µmol trolox equivalents (TE)/g. The results presented herein indicate that in addition to acting as an alternative source of collagen for food applications, mussel byssus collagen-derived hydrolysates have potential applications as functional food ingredients for the management of metabolic diseases such as type II diabetes and hypertension.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call