Abstract

AbstractFused deposition modeling (FDM) plays a crucial role in additive manufacturing in the development of novel materials to match the properties of patient specific implants. Polylactic acid (PLA) based biodegradable composite scaffold has shown remarkable progress in tissue engineering due to its better processing compatibility and mechanical properties. In this research work, widely available natural biomaterial egg shell particle (ESP) was used as a filler material, as the minerals aid during bone formation and mineralization. To study the effect of filler particles in PLA, filler percentage and porosity were varied up to 12% and 60%. The scaffolds were characterized for compression, surface morphology, porosity, water contact angle, and in vitro studies. Micro fibers with 10–100 μm were developed using FDM technology. A reduction of up to 85% was made in the water contact angle with respect to an increase in filler particles. 10% ESP withstood a maximum load of 369 MPa at 40% porosity. A maximum weight loss of 11 mg in 12% ESP composite at 60% porosity scaffolds was observed in simulated body fluid study. 3‐(4,5‐dimethyl‐2‐thiazolyl)‐2,5‐diphenyltetrazolium bromide (MTT) assay results revealed the absence of toxicity up to 72 h in the composite. 12% ESP showed good cell viability compared to pure PLA and 10% ESP scaffolds having better mechanical and biological properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call