Abstract

Transition metal-doped titanium dioxide nanoparticles (M-TiO2 NPs) have been studied to enhance the activity of TiO2 NPs in biomedical applications. In this study, in vitro and in vivo toxicological aspects of M-TiO2 NPs were reported to assess the safety of these materials. M-TiO2 NPs were synthesized via a photo-deposition technique. Nickel (Ni) and platinum (Pt) were used as dopants. Physicochemical properties, cytotoxicity, phototoxicity, gene ontology (GO) and dermal toxicity of M-TiO2 NPs were investigated. Ni-TiO2 (Ni, 1.02%) and Pt-TiO2 (Pt, 0.26%) NPs were sphere shape crystals with nanoscale size. ARPE-19 cells were more susceptible to Pt-TiO2NPs (EC50, 0.796mg/mL) than Ni-TiO2 NPs (EC50, 2.945mg/mL). M-TiO2 NPs were rated as probably phototoxic to phototoxic. GO suggested binding function and metabolic processes as a risk mechanism of M-TiO2 NPs. In vivo toxicological effects of Ni-TiO2 NPs were not observed on body weight, serum aspartate transaminase/alanine transaminase levels, and skin histology at 61.5-6150mg/kg. Specifically, skin thickness was not significantly modified (max. 33.2±8.7μm) and inflammation grade was less than level 2 (max. 1.2±0.4). From these results, Ni-TiO2 and Pt-TiO2 NPs show promise as enhanced photocatalysts for safe and sustainable usage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.