Abstract

Copper sulfide (CuS) has emerged as a promising photothermal agent. However, its potential toxic effects still remained poorly understood. Herein, CuS nanoplates were synthesized for toxicity assessment. The in vitro study indicated that the cell viability decreased when CuS nanoplate concentration was higher than 100 μg/mL. CuS nanoplates caused apparent toxicity to HUVEC and RAW 264.7 cells. For acute toxicity, maximum tolerated dose and lethal dose 50 were 8.66 and 54.5 mg/kg, respectively. Furthermore, the sub-chronic toxicity test results indicated that there was no obvious effect at tested doses during the test period. The biodistribution study showed that intravenously administrated CuS nanoplates were mainly present in the spleen, liver and lung. Taken together, our results shed light on the rational design of CuS nanomaterials to minimize toxicity, thus providing a useful guideline in selecting CuS as the photothermal agent for cancer therapy. From the Clinical EditorPhotothermal ablation therapy is a promising new treatment modality for cancer. One of the potential photothermal agents is copper sulfide (CuS). In this article, the potential toxic effects of CuS nanoplates were studied. The authors showed that further modification on the design of CuS nanomaterials was needed to minimize toxicity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.