Abstract
Fentanyl analogues have been implicated in many cases of intoxication and death with overdose worldwide. The aim of this study is to investigate the pharmaco-toxicology of two fentanyl analogues: butyrylfentanyl (BUF) and 4-fluorobutyrylfentanyl (4F-BUF). In vitro, we measured agonist opioid receptor efficacy, potency, and selectivity and ability to promote interaction of the μ receptor with G protein and β-arrestin 2. In vivo, we evaluated thermal antinociception, stimulated motor activity and cardiorespiratory changes in female and male CD-1 mice injected with BUF or 4F-BUF (0.1-6 mg·kg-1). Opioid receptor specificity was investigated using naloxone (6 mg·kg-1). We investigated the possible role of stress in increasing cardiorespiratory toxicity using the corticotropin-releasing factor 1 (CRF1) antagonist antalarmin (10 mg·kg-1). Agonists displayed the following rank of potency at μ receptors: fentanyl > 4F-BUF > BUF. Fentanyl and BUF behaved as partial agonists for the β-arrestin 2 pathway, whereas 4F-BUF did not promote β-arrestin 2 recruitment. In vivo, we revealed sex differences in motor and cardiorespiratory impairments but not antinociception induced by BUF and 4F-BUF. Antalarmin alone was effective in blocking respiratory impairment induced by BUF in both sexes but not 4F-BUF. The combination of naloxone and antalarmin significantly enhanced naloxone reversal of the cardiorespiratory impairments induced by BUF and 4F-BUF in mice. In this study, we have uncovered a novel mechanism by which synthetic opioids induce respiratory depression, shedding new light on the role of CRF1 receptors in cardiorespiratory impairments by μ agonists.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.