Abstract

3-Methoxyeticyclidine (3-MeO-PCE), a phencyclidine-type substance, has a higher N-methyl-D-aspartate receptor binding affinity than phencyclidine and an involvement in fatal intoxication cases. The aim of this study was to identify new biomarkers and biotransformation pathways for 3-MeO-PCE. In vitro models were established using zebrafish and human liver microsomes for analysis of the phases I and II metabolites of 3-MeO-PCE by liquid chromatography-high-resolution mass spectrometry. Urine samples of known 3-MeO-PCE consumers in forensic cases were then subjected to analysis. Overall, 14 metabolites were identified in zebrafish and human liver microsomes, allowing postulation of the following metabolic pathways: hydroxylation, O-demethylation, N-dealkylation, dehydrogenation, combination, and glucuronidation or sulfation. 3-MeO-PCE and three metabolites (M2, M3, and M6) were detected in urine. We recommended M2 (the hydroxylation product) as a potential biomarker for documenting 3-MeO-PCE intake in clinical and forensic cases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call