Abstract
We investigated the phagocytosis of Haemophilus ducreyi both in vitro and in vivo. Human granulocyte and monocyte phagocytosis of opsonized and nonopsonized, fluorescence-labeled H. ducreyi was assessed by flow cytometry. Both Escherichia coli and noncapsulated H. influenzae were included as controls. The maximal percentage of granulocytes taken up by H. ducreyi was 35% after 90 min. In contrast, 95% of H. influenzae bacteria were phagocytosed by granulocytes after 30 min. These results indicated that H. ducreyi phagocytosis was slow and inefficient. Bacterial opsonization by using specific antibodies increased the percentage of granulocytes phagocytosing H. ducreyi from 24 to 49%. The nonphagocytosed bacteria were completely resistant to phagocytosis even when reexposed to granulocytes, indicating that the H. ducreyi culture comprised a mixture of phenotypes. The intracellular survival of H. ducreyi in granulocytes, in monocytes/macrophages, and in a monocyte cell line (THP-1) was quantified after application of gentamicin treatment to kill extracellular bacteria. H. ducreyi survival within phagocytes was poor; approximately 11 and <0.1% of the added bacteria survived intracellularly after 2 and 20 h of incubation, respectively, while no intracellular H. influenzae bacteria were recovered after 2 h of incubation with phagocytes. The role of phagocytes in the development of skin lesions due to H. ducreyi was also studied in vivo. Mice that were depleted of granulocytes and/or monocytes and SCID mice, which lacked T and B cells, were injected intradermally with approximately 10(6) CFU of H. ducreyi. Within 4 days of inoculation, the granulocyte-depleted mice developed lesions that persisted throughout the experimental period. This result reinforces the importance of granulocytes in the early innate defense against H. ducreyi infection. In conclusion, H. ducreyi is insufficiently phagocytosed to achieve complete eradication of the bacteria. Indeed, H. ducreyi has the ability to survive intracellularly for short periods within phagocytic cells in vitro. Since granulocytes play a major role in the innate defense against H. ducreyi infection in vivo, bacterial resistance to phagocytosis probably plays a crucial role in the pathogenesis of chancroid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.