Abstract

A metabolic interaction between stiripentol (STP), an anticonvulsant agent that inhibits the activity of several cytochromes P450 (P450s), and clobazam (CLB), a 1,5-benzodiazepine, used in association with STP in severe myoclonic epilepsy in infancy was observed in vivo. This interaction was characterized in vitro using cDNA-expressed CYP3A4 and CYP2C19 (main P450 involved in CLB metabolism) to calculate K(i) and IC(50) of stiripentol in comparison with ketoconazole (CYP3A4 inhibitor) and omeprazole (CYP2C19 inhibitor). STP inhibited N-demethylation of CLB to N-desmethylclobazam (NCLB) mediated by CYP3A4 (noncompetitively) and CYP2C19 (competitively) with K(i) = 1.59 +/- 0.07 and 0.516 +/- 0.065 microM and IC(50) = 1.58 microM [95% confidence interval (CI95%) = 1.20-2.08] and 3.29 microM (CI95% = 1.87-5.79), respectively. STP inhibited also more strongly the 4'-hydroxylation of NCLB to 4'-hydroxy-N-desmethylclobazam by CYP2C19 [competitive interaction with K(i) = 0.139 +/- 0.025 microM and IC(50) = 0.276 microM (CI95% = 0.206-0.371)]. The inhibitory effect of STP on CLB demethylation by CYP3A4 was much weaker than that of ketoconazole [IC(50) = 0.023 microM (CI95% = 0.016-0.033)], whereas its effect on NCLB hydroxylation by CYP2C19 was much higher than that of omeprazole [IC(50) = 2.99 microM (CI95% = 2.11-4.24)]. The major in vitro inhibitory effect of STP on CLB metabolism and mostly on NCLB biotransformation is consistent with the changes in vivo in CLB and NCLB plasma concentrations in children treated by the association CLB/STP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call