Abstract

The unique role of interleukin (IL)-5 in eosinophil production, activation, and localization makes this cytokine a prime target for therapeutic intervention in diseases characterized by a selective blood and tissue eosinophilia. In an attempt to block the effects of IL-5 on eosinophils, a strategy was developed to suppress the expression of the IL-5 receptor alpha chain (IL-5Ralpha) by antisense oligonucleotides (ASOs). IL-5Ralpha ASOs were identified which selectively and specifically suppress the expression of messenger RNA and proteins of both the membrane and the soluble form of the receptor in constitutively IL-5R-expressing murine BCL-1 cells in vitro. Moreover, these IL-5Ralpha-specific ASOs were able to selectively inhibit the IL-5-induced eosinopoesis from murine fetal liver and bone marrow cells in vitro, suggesting that these molecules may affect the development of IL-5-mediated eosinophilia in vivo. Indeed, intravenous administration of IL-5Ralpha-specific ASOs not only suppressed the bone-marrow and blood eosinophilia in mice after short-term treatment with recombinant murine IL-5 but also inhibited the development of blood and tissue eosinophilia in a ragweed-induced allergic peritonitis model. Thus, blocking the expression of IL-5Ralpha on eosinophil using ASOs may have therapeutic benefits in eosinophilic diseases such as asthma.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call