Abstract

The annual increase in the production and the use of engineering quantum dots (QDs) have led to concern about exposure and safety of QDs. To resolve the risk of Cd release from QDs, a series of Cd-free QDs, represented by CuInS2/ZnS QDs, has been developed in recent years. However, the toxicological profile of CuInS2/ZnS QDs has not been fully elucidated, especially, their immunotoxicity. Here, we performed a detailed in vitro cytotoxicity study on PEGylated CuInS2/ZnS QDs using the DC2.4 cell line and investigated their in vivo immunotoxicity using BALB/c mice. In vitro experiments showed that CuInS2/ZnS QDs were taken up by cells, promoted cell viability, enhanced release of tumor necrosis factor-α, and decreased the level of interleukin (IL)-6 in response to lipopolysaccharide stimulation. More than 5000 genes at the transcriptome level were observed by high-throughput RNA sequencing after CuInS2/ZnS QD exposure. In vivo study showed that CuInS2/ZnS QDs increased the levels of IL-4 on day 1 and enhanced the levels of IL-10 and IL-13 on day 28 in mice. There was no obvious difference in the number of spleen-derived lymphocytes, organic index, hematology and immune organ histology on days 1 and 28 after treatment. These findings demonstrated that PEGylated CuInS2/ZnS QDs disturbed the function of DC2.4 immune cells in vitro, but caused no obvious toxicity to immune system in vivo, suggesting that PEGylated CuInS2/ZnS QDs are biocompatible and have potential for bioapplication in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call