Abstract

Methyleugenol (ME) is a ubiquitous component in spices and other culinary herbal products. A prevailing theory in ME toxicity is its ability to be metabolically activated by P450 enzymes and sulfotransferases, which initiates sequential reactions of the resulting metabolites with functional biomolecules. The present study aimed at a potential interaction between the reactive metabolites of ME and RNA. Cultured mouse primary hepatocytes were incubated with ME followed by RNA extraction and NaOH and alkaline phosphatase-based RNA hydrolysis. Three adenosine adducts were detected in the hydrolytic mixture by LC-MS/MS. The same adenosine adducts were also detected in hepatic tissues harvested from ME-treated mice. These three adducts were chemically synthesized and structurally characterized by 1H NMR. Additionally, two guanosine adducts and one cytidine adduct were detected in the in vivo samples. These results provided solid evidence that the reactive metabolites of ME attacked RNA, resulting in RNA adduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.