Abstract

The role of theranostics in cancer management is growing so is the selection of vectors used to deliver these modalities to cancer cells. We describe biological evaluation of a novel theranostic agent targeted to microtubules. Methyl N-[5-(3'-[131 I]iodobenzoyl)-1H-benzimidazol-2-yl]carbamate (1) and methyl N-[5-(3'-[125 I]iodobenzoyl)-1H-benzimidazol-2-yl]carbamate (2) were synthesized from a common precursor 3'-stannylated derivative (4). Antiproliferative effects and radiotoxicity of 131 I-labeled β-particle emitting 1 were examined in vitro in human neuroblastoma and glioblastoma cells lines. The therapeutic potential of 1 was also examined in a subcutaneous mouse model of human glioblastoma U-87 MG. Compound 1 at the extracellular radioactive concentration of 0.35 MBq/mL, easily achievable in vivo, kills >90% of neuroblastoma cells and >60% glioblastoma cells as measured in a clonogenic assay. D10 doses established for 1 indicate that as few as 3,000 decays are sufficient to kill 90% of BE(2)-C cells. Even U-87 MG cells, the least sensitive of the tested cell lines, require <20,000 decays of intracellular 131 I to reduce number of clonogenic cells by 90%. Biodistribution studies of 2 delivered either intratumorally or intraperitoneally show a similar tissue distribution for both routes of the drug administration. The whole body clearance half-lives were on average 6 hr. Intratumor administration of 1 produces significant tumor growth delay. After a single dose of 8.4 ± 0.3 MBq of compound 1, the tumor doubling times were 3.2 ± 0.1 and 7.9 ± 0.6 days in control and treated mice, respectively. Methyl N-[5-(3'-radiohalobenzoyl)-1H-benzimidazol-2-yl]carbamates have properties compatible with a theranostic approach to cancer management.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.