Abstract

To develop a stable self-emulsifying formulation for oral delivery of insulin. Caco-2 cell line and diabetic beagles were used as in vitro and in vivo models to study the absorption mechanism and the hypoglycemic efficacy of the formulation. In addition, various physicochemical parameters of the formulation such as droplet size, insulin encapsulation efficiency and stability were evaluated. This formulation enabled changes in barrier properties of Caco-2 monolayers, as referred by transepithelial electrical resistance (TEER) and apparent permeability coefficients (P(app)) of the paracellular marker ranitidine (20-fold greater than control) but not transcellular marker propranolol, suggesting that the opening of tight junctions was involved. In diabetic beagle dogs, the bioavailability of this formulation was up to 15.2% at a dose of 2.5 IU/kg in comparison with the hypoglycemic effect of native insulin (0.5 IU/kg) delivered by subcutaneous injection. This formulation, recently approved by the China State Food and Drug Administration to enter clinical trials, was stable, degradation-protected and absorption-enhanced, and provided a promising formulation for oral insulin delivery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.