Abstract
ObjectivesTo evaluate skin barrier and hydration effects of a new rebalancing moisture treatment (TRMT) and to assess efficacy and tolerability in subjects with photodamaged skin.MethodsIn an epidermal skin model, tissues (n = 5/group) were topically treated with 25 µL of TRMT, 25 µL of a market‐leading moisturizer (MLM), or untreated for 60 minutes. Hydration was measured at 0, 15, and 30 minutes. Tissues were harvested for gene expression analysis of markers associated with skin barrier and hydration: Claudin (CLD), Aquaporin (AQP), Hyaluronic Acid Syntheses (HAS), and Hyaluronidase (HYAL). A clinical study evaluated twice‐daily application of TRMT, assessing changes in fine lines/wrinkles, brightness, texture, erythema, and tolerability from baseline through week 8. Hydration was measured using electrical impedance.ResultsTRMT and MLM demonstrated significant increases in hydration vs untreated tissue at each timepoint (P < .005), with greater hydration effects observed for TRMT vs MLM. TRMT‐treated tissues demonstrated greater expression of CLD, AQP, and HA, and reduced expression of HYAL vs untreated and MLM‐treated tissues. Twice‐daily application of TRMT demonstrated significant improvements at 2 weeks in fine lines/wrinkles (P < .001), brightness (P < .0001), texture (P < .0004), and hydration (P < .004). At 8 weeks, statistically significant improvements were achieved in all categories.ConclusionIn an epidermal skin model, TRMT demonstrated significant increases in hydration, greater hydration effects, and expression of key markers associated with skin barrier and hydration vs a MLM. Twice‐daily application of TRMT was well tolerated and resulted in early, significant improvements in hydration and visible improvements in skin brightness, texture, fine lines/wrinkles, and erythema at 8 weeks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.