Abstract

Calcium phosphate (Ca-P) coatings have been applied onto titanium alloys prosthesis to combine the srength of metals with the bioactivity of Ca-P. It has been clearly shown in many publications that Ca-P coating accelerates bone formation around the implant. However, longevity of the Ca-P coating for an optimal bone apposition onto the prosthesis remains controversial. Biomimetic bone-like carbonate apatite (BCA) and Octacalcium Phosphate (OCP) coatings were deposited on Ti6Al4V samples to evaluate their in vitro and in vivo dissolution properties. The coated plates were soaked in alpha-MEM for 1, 2, and 4 weeks, and they were analyzed by Back Scattering Electron Microscopy (BSEM) and by Fourier Transform Infra Red spectroscopy (FTIR). Identical coated plates were implanted subcutaneously in Wistar rats for similar periods. BSEM, FTIR, and histomorphometry were performed on the explants. In vitro and in vivo, a carbonate apatite (CA) formed onto OCP and BCA coatings via a dissolution-precipitation process. In vitro, both coatings dissolved overtime, whereas in vivo BCA calcified and OCP partially dissolved after 1 week. Thereafter, OCP remained stable. This different in vivo behavior can be attributed to (1) different organic compounds that might prevent or enhance Ca-P dissolution, (2) a greater reactivity of OCP due to its large open structure, or (3) different thermodynamic stability between OCP and BCA phases. These structural and compositional differences promote either the progressive loss or calcification of the Ca-P coating and might lead to different osseointegration of coated implants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call