Abstract

BackgroundMedium-chain acyl-CoA dehydrogenase (MCAD) deficiency is the most common inherited disorder of the mitochondrial fatty acid oxidation, caused by mutations in the ACADM gene. Since the introduction of neonatal screening for MCAD deficiency, a subgroup of newborns have been identified with variant ACADM genotypes that had never been identified before in clinically ascertained patients. In vitro residual MCAD enzyme activity has been found to facilitate risk-stratification. In this study we integrated results of in vitro (residual MCAD enzyme activities) and in vivo (clinical fasting tolerance tests, and phenylpropionic acid loading tests) tests in this subgroup of newborns, defining the consequences of variant ACADM genotypes.MethodsEnzyme analyses were performed in leukocytes with: hexanoyl-CoA (C6-CoA) +/− butyryl-CoA (C4-CoA), and phenylpropionyl-CoA (PP-CoA). In vitro studies were performed in 9 subjects with variant ACADM genotypes, in vivo functional tests in 6 of these subjects.ResultsEnzyme analyses with C6-CoA, C6-CoA + C4-CoA, and PP-CoA identified significantly higher residual MCAD enzyme activities in subjects with variant ACADM genotypes when compared to patients with classical ACADM genotypes.After prolonged fasting (range 15–18.5 hours) no hypoglycaemia was observed. Increasing concentrations of free fatty acids indicated lipolysis, and ketone body concentrations were sufficient for blood glucose concentrations in 5 out of 6 subjects. Phenylpropionic acid loading clearly demonstrated in vivo residual MCAD enzyme activity in all studied subjects.ConclusionsSubjects with variant ACADM genotypes and residual MCAD enzyme activities >10% display residual MCAD enzyme activities in vitro and in vivo. Our findings support the hypothesis that the guidelines on maximal duration of fasting might be abandoned in subjects with residual MCAD enzyme activities >10% under normal conditions. An emergency regimen and parental instructions remain necessary in all subjects with MCAD deficiency, regardless of residual MCAD enzyme activity.

Highlights

  • Inherited disorders of mitochondrial fatty acid oxidation are a group of acute presenting, life-threatening disorders among which medium-chain acyl coenzyme A dehydrogenase (MCAD [E.C.1.3.99.3; OMIM 201450]) deficiency is the most common [1]

  • Diagnosis of Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is made after abnormal neonatal bloodspot screening (NBS), based on persisting abnormal metabolite profiles, the presence of 2 mutations on the Gene encoding medium-chain acyl-CoA dehydrogenase (ACADM) gene, and/or residual MCAD enzyme activity

  • Cohort From the birth cohort 2003–2011, 50 newborns were diagnosed with MCAD deficiency in our centre after referral for a positive NBS

Read more

Summary

Introduction

Inherited disorders of mitochondrial fatty acid oxidation (mFAO) are a group of acute presenting, life-threatening disorders among which medium-chain acyl coenzyme A dehydrogenase (MCAD [E.C.1.3.99.3; OMIM 201450]) deficiency is the most common [1]. Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is the most common inherited disorder of the mitochondrial fatty acid oxidation, caused by mutations in the ACADM gene. Since the introduction of neonatal screening for MCAD deficiency, a subgroup of newborns have been identified with variant ACADM genotypes that had never been identified before in clinically ascertained patients. In this study we integrated results of in vitro (residual MCAD enzyme activities) and in vivo (clinical fasting tolerance tests, and phenylpropionic acid loading tests) tests in this subgroup of newborns, defining the consequences of variant ACADM genotypes

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call