Abstract

One challenge in developing a nanoparticle drug-delivery system is understanding the critical physicochemical properties that may impact its in vivo performance and establishing analytical techniques that can adequately characterize in vitro and in vivo properties. Doxil®/Caelyx®, a PEGylated liposomal doxorubincin (PLD), is one of the leading approved nanoparticle product used in cancer therapy. In this review, we use PLD as an example to illustrate identification of key in vitro and in vivo characteristics. The following characteristics, including liposome composition, state of encapsulated drug, internal environment of liposome, liposome size distribution, lamellarity, grafted polyethylene glycol at the liposome surface, electrical surface potential or charge, and in vitro leakage, are considered critical to demonstrate the supramolecular structure of PLD and ensure consistent drug delivery to cancer tissues. Corresponding analytical techniques are discussed to determine these liposome characteristics. Furthermore, in vivo stability of the PLD can be determined by plasma pharmacokinetics of both free and liposome-encapsulated drug. A better understanding of the critical in vitro and in vivo liposome characteristics together with improvements in analytical technology will enable generic liposome product development and ensure liposome product quality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.