Abstract

The utilization of neurotrophins in medicine shows significant potential for addressing neurodegenerative conditions, such as age-related macular degeneration (AMD). However, the therapeutic use of neurotrophins has been restricted due to their short half-life. Here, we aimed to synthesize PEGylated nanoparticles based on electrostatic-driven interactions between human serum albumin (HSA), a carrier for adsorption; neurotrophin-3 (NT3); and brain-derived neurotrophic factor (BDNF). Electrophoretic (ELS) and multi-angle dynamic light scattering (MADLS) revealed that the PEGylated HSA-NT3-BDNF nanoparticles ranged from 10 to 430 nm in diameter and exhibited a low polydispersity index (<0.4) and a zeta potential of −8 mV. Based on microscale thermophoresis (MST), the estimated dissociation constant (Kd) from the HSA molecule of BDNF was 1.6 μM, and the Kd of NT3 was 732 μM. The nanoparticles were nontoxic toward ARPE-19 and L-929 cells in vitro and efficiently delivered BDNF and NT3. Based on the biodistribution of neurotrophins after intravitreal injection into BALB/c mice, both nanoparticles were gradually released in the mouse vitreous body within 28 days. PEGylated HSA-NT3-BDNF nanoparticles stabilize neurotrophins and maintain this characteristic in vivo. Thus, given the simplicity of the system, the nanoparticles may enhance the treatment of a variety of neurological disorders in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call