Abstract

The progesterone receptor (PR) is an important regulator of female reproduction. Consequently, PR modulators have found numerous pharmaceutical utilities in women's reproductive health. In the process of identifying more receptor-specific and tissue-selective PR modulators, we discovered a novel nonsteroidal, 6-aryl benzoxazinone compound, PRA-910, that displays unique in vitro and in vivo activities. In a PR/PRE reporter assay in COS-7 cells, PRA-910 shows potent PR antagonist activity with an IC50 value of approximately 20 nM. In the alkaline phosphatase assay in the human breast cancer cell line T47D, PRA-910 is a partial progesterone antagonist at low concentrations and is also an effective PR agonist at higher concentrations (EC50 value of approximately 700 nM). PRA-910 binds to the human PR with high affinity (Kd = 4 nM) and was previously shown to exhibit greater than 100-fold selectivity for the PR versus other steroid receptors. In the adult ovariectomized rat, PRA-910 is a potent PR antagonist. It inhibits progesterone-induced uterine decidual response with an ED50 value of 0.4 mg/kg, p.o., and reverses progesterone suppression of estradiol-induced complement C3 expression with potency similar to RU-486. In the nonhuman primate, however, PRA-910 is a PR agonist. The effect on endometrial histology strongly resembles that of progesterone. This unique compound also suppresses estradiol-induced epithelial cell proliferation and both estrogen and progesterone receptor expression in the uterine endometrium as a PR agonist would. In summary, PRA-910 is a structurally and biologically novel selective PR modulator with either PR agonist or antagonist activity, depending on context, concentration, and species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.