Abstract

To reduce infection rates after mesh implantation antibiotic-coated meshes were designed. The aim of the study was to analyze biocompatibility and in vitro efficiency of a modified gentamicin-supplemented polyvinylidenfluoride mesh. Twenty rats were randomized to two groups (PVDF group and Genta group). Mesh material was implanted subcutaneously. Blood samples were taken to determine the gentamicin serum concentration. Seven and 90 days after mesh implantation, animals were euthanized. The inflammatory tissue response was characterized by analyzing the foreign body granuloma. Cellular immune response was analyzed by immunohistochemical investigations. The collagen type I/III ratio was estimated by crosspolarization microscopy. In vitro agar diffusion test, suspension test, and gentamicin release were characterized. Agar diffusion and suspension test showed efficient antibiotic effects of the mesh in vitro. Serum concentrations of gentamicin showed a peak value 1 h postoperatively with a decline within the next day. The total size of the granuloma was significantly smaller in the Genta group compared to the PVDF group at both points of time. Except of a short period of increased expression of CD68 in the Genta group after 7 days, no further difference was found analyzing cellular immune response. The collagen type I/III ratio was widely constant analyzing the two mesh types without significant differences comparing both mesh materials. A significantly decreased foreign body granuloma formation compared to the pure PVDF mesh group was found. In vitro analysis showed efficient antibiotic effects of the Gentamicin supplementation compared to the pure PVDF mesh.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.