Abstract

Abstract The importance of monitoring in vivo interaction that occurs between cells /bio/tissue recipient in the understanding of tissue regeneration processes becomes ever greater. This study aims to monitor and evaluate the influence of scaffold implants of poly (L-co-D, L lactic acid) - PLDLA synthesized in the laboratory, previously cultured with primary osteoblastic cells heterologously stained with the fluorescent vital dye, PKH26, on the tissue regeneration process in 8 mm central critical defects of the Wistar rat calvaria. The results obtained by MTT assay and monitoring of cells stained with PKH26 dye over 14 days of culture showed that the dye was cytocompatible with osteoblastic cells and did not exert a negative influence on the growth of unstained cells. In the in vivo study, macroscopic observations made during deployment times corroborate the results in vitro, as no apparent signs of toxicity were observed in the implanted bone defect area. The use of mobile monitoring with the dye, PKH26 in vivo is an effective strategy for the understanding of cell behaviour in the presence of PLDLA polymer.

Highlights

  • IntroductionAmong the materials with the greatest potential to be used in tissue engineering, bioresorbable polymers belonging to the family of poly (α-hydroxy acids), such as poly (L-co-D, L lactic acid) (PLDLA), stand out for their properties such as biocompatibility and versatility in terms of degradation over time

  • The use of mobile monitoring with the dye, PKH26 in vivo is an effective strategy for the understanding of cell behaviour in the presence of PLDLA polymer

  • In order to monitor the manner of operation and colouring behaviour of PKH 26, primary osteoblast cells previously stained with PKH26 were grown on glass coverslips and monitored by fluorescence microscopy after 24 h and 14 days in culture (Figure 2)

Read more

Summary

Introduction

Among the materials with the greatest potential to be used in tissue engineering, bioresorbable polymers belonging to the family of poly (α-hydroxy acids), such as poly (L-co-D, L lactic acid) (PLDLA), stand out for their properties such as biocompatibility and versatility in terms of degradation over time. Efficient way to promote the organization, growth and differentiation of cells in the tissue formation process in injured tissue, the most appropriate type of devices are the scaffolds, which must meet a series of requirements, such as excellent biocompatibility, good mechanical properties and adequate porosity[3,4]. The copolymer chain sequence hinder the crystallization of the fluorescent dye, PKH26 is an efficient marker that can lactic L- acid, while the strength of the material is maintained be used to track and trace cells through its ability to bind to for the period necessary for recovering the treated tissue[6]. The copolymer chain sequence hinder the crystallization of the fluorescent dye, PKH26 is an efficient marker that can lactic L- acid, while the strength of the material is maintained be used to track and trace cells through its ability to bind to for the period necessary for recovering the treated tissue[6]. membrane lipid regions of several cell types[10,11]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.