Abstract

A variety of methods have been developed for accurate and systematic evaluation of chemical genotoxicity. Ceric ammonium nitrate (CAN) and 1,3-propane sultone (1,3-PS) have been extensively applied in industrial fields. Although 1,3-PS, but not CAN, has been reported as a potent carcinogen, systematic assessment of the genotoxic properties of these chemicals has not been conducted. The purpose of this study was to establish a decision tree for evaluating genotoxicity based on the good laboratory practices (GLP) system using 1,3-PS and CAN as test chemicals. In vitro studies were performed including the bacterial reverse mutation assay, chromosomal aberration assay, and micronucleus assay. We conducted in vivo studies using a combined micronucleus and alkaline comet (MN-CMT) assay and the Pig-a gene mutation assay, which is a promising method for detecting gene mutations in vivo. CAN showed negative responses in all in vitro genotoxicity assays and the in vivo combined MN-CMT assay. Meanwhile, 1,3-PS had positive results in all in vitro and in vivo genotoxicity assays. In this study, we confirmed the genotoxicity of 1,3-PS and CAN using both in vitro and in vivo assays. We propose a decision tree for evaluating chemical-induced genotoxicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.