Abstract

Ethnopharmacological relevanceArtemisia annua L. belongs to the Asteraceae family and has a long history of clinical application in China. It has been widely used for centuries to treat fever, malaria, jaundice and some skin diseases (such as scabies and sores). Modern pharmacological studies have shown that it has anti-inflammatory, immunomodulatory, antimalarial and antibacterial effects. Aim of studyThis study aimed to investigate the anti-eczema effect of A. annua aqueous extract (AAE), profile its potential bioactive components and try to explore its possible underlying mechanisms. Materials and methodsThe MTT assay was employed to assess the cytotoxicity of AAE. The anti-eczema effect of AAE was evaluated using both an in vitro 3D epidermal inflammation model and an in vivo guinea pig itching model. The bioactive components of AAE were characterized by ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry coupled with the UNIFI platform. ResultsIn this study, we found that AAE is safe for primary human skin keratinocytes at concentrations ranging from 31.3 μg/mL to 250 μg/mL. Further investigations indicate that AAE can increase the itching threshold, inhibit the expression of the inflammatory cytokine TSLP, and promote the expression of FLG mRNA. Additionally, the utilization of UPLC-QTOF/MS and UNIFI platform enabled us to identify 61 potential bioactive components of AAE, with sesquiterpenes and phenolic acids being the most abundant components. ConclusionsIn this study, the anti-inflammatory and anti-itch effects of the A. annua extract were revealed, along with sesquiterpenes and phenolic acids were identified as potential bioactive components according to literature. The AAE extract holds potential for utilization in the treatment of eczema.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call