Abstract

Our objectives were to study the biological activity of a novel gemcitabine-cardiolipin conjugate (NEO6002) and compare that with gemcitabine. Cytotoxicity in vitro was determined against several gemcitabine-sensitive parental and gemcitabine-resistant cancer cell lines using the sulforhodamine B assay. The in vivo toxicity was examined by changes in body weight and hematologic indices of conventional mice. Immunodeficient SCID mice bearing P388 and BxPC-3 tumor xenografts were used to evaluate the in-vivo therapeutic efficacy. Both NEO6002 and gemcitabine showed pro-apoptotic and cytotoxic effects against all gemcitabine-sensitive cell lines tested. Unlike gemcitabine, the cytotoxicity of NEO6002 was independent of nucleoside transporter (NT) inhibitors, indicating a different internalization route of NEO6002. The conjugate demonstrated a favorable activity not only in ARAC-8C, a NT-deficient gemcitabine-resistant human leukemia cell line, but also in several other gemcitabine-resistant cell lines. At the in-vivo level, a comparative toxicity study showed a significant body weight loss and a decrease in white blood cell counts in gemcitabine-treated mice, whereas the influence of NEO6002 was mild. Treatment of NEO6002 at 27 micromol/kg increased the median survival of CD2F1 mice bearing P388 cells by up to 73%, while at the same doses and schedule of gemcitabine resulted in toxic deaths of all treated mice. At a dose of 18 micromol/kg, NEO6002 inhibited the growth of BxPC-3 xenografts by 52%, while only 32% of tumor inhibition was achieved with gemcitabine. We conclude that NEO6002 may be an effective chemotherapeutic agent with improved tolerability and can potentially circumvent NT-deficient, gemcitabine-resistant tumors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call